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Abstract

Multi-Task Learning (MTL) is a powerful tech-

nique that has gained popularity due to its perfor-

mance improvement over traditional Single-Task

Learning (STL). However, MTL is often challeng-

ing because there is an exponential number of pos-

sible task groupings, which can make it difficult

to choose the best one, and some groupings might

produce performance degradation due to negative

interference between tasks. Furthermore, existing

solutions are severely suffering from scalability

issues, limiting any practical application. In our

paper, we propose a new data-driven method that

addresses these challenges and provides a scalable

and modular solution for classification task group-

ing based on hand-crafted features, specifically

Data Maps, which capture the training behavior

for each classification task during the MTL train-

ing. We experiment with the method demonstrat-

ing its effectiveness, even on an unprecedented

number of tasks (up to 100).

1. Introduction

Multi-Task Learning (MTL) has emerged as a powerful tech-

nique in deep learning (Zhang & Yang, 2022; Crawshaw,

2020) that allows for joint training of multiple related tasks,

leading to improved model performance compared to tra-

ditional Single-Task Learning (STL). By leveraging shared

representations and knowledge across tasks, MTL enhances

generalization and mitigates overfitting. Furthermore, MTL

promotes faster learning of related tasks and alleviates the

computational requirements of deep learning, making it

particularly valuable in scenarios with limited task-specific

data. That is why MTL has gained significant attention

in various domains, including computer vision (Fan et al.,

2017; Misra et al., 2016; Standley et al., 2020), natural lan-

guage processing (Zhang et al., 2022b; Peng et al., 2020; Jin
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et al., 2020; Bickel et al., 2008), speech recognition (Huang

et al., 2022b; Zhang et al., 2019), and healthcare (Peng et al.,

2020; Bao et al., 2022; Islam et al., 2021), and has shown

promising results in improving accuracy, robustness, and

efficiency. However, effectively harnessing the potential of

MTL poses several challenges, including the identification

of optimal task groupings (Song et al., 2022; Fifty et al.,

2021; Standley et al., 2020) and the management of negative

interference between tasks (Sener & Koltun, 2018; Wu et al.,

2020; Maninis et al., 2019).

The task grouping problem in MTL is particularly challeng-

ing due to the exponential number of possible task combina-

tions (Aribandi et al., 2021; Fifty et al., 2021; Standley et al.,

2020; Song et al., 2022). What makes it worse for the ex-

haustive search is that each trial involves a complete training

and evaluation procedure, leading to computational and op-

timization burden. Moreover, inappropriate task groupings

may result in performance degradation due to negative trans-

fer between tasks (Sener & Koltun, 2018; Wu et al., 2020;

Maninis et al., 2019). Existing solutions have struggled to

address these challenges, often suffering from scalability

and modularity issues, making their practical application in

real-world scenarios nearly infeasible.

In this paper, we propose a novel data-driven method for task

grouping in MTL for classification tasks, which overcomes

the scalability and modularity limitations. Our method uti-

lizes the concept of Data Maps (Swayamdipta et al., 2020),

hand-crafted features that capture the training behavior of

each classification task during MTL training. By analyz-

ing these data maps, we can identify task groupings, both

hard and soft ones, that promote positive transfer and miti-

gate negative interference as much as possible. We demon-

strate the effectiveness of our method through extensive ex-

perimentation, including experiments on an unprecedented

number of tasks, scaling up to 100 tasks to emphasize the

practicality of our approach.

The contributions of this paper can be summarized as fol-

lows:

• We propose a novel data-driven method for task group-

ing in MTL, addressing the challenges of scalability

and modularity.
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• We propose a mechanism that utilizes our soft-

grouping results, enabling model specialization via

loss weighting.

• We conduct extensive experiments, demonstrating the

effectiveness of our method, even on a large number of

tasks (scaling up to 100 classification tasks).

2. Related Work

MTL has been extensively studied to leverage the benefits of

information sharing among related tasks, which can serve as

an inductive bias to improve modeling performance (Caru-

ana, 1997; Zhang & Yang, 2022). Another perspective on

MTL is that it enables more efficient utilization of the model

capacity by focusing on learning relevant features and re-

ducing the impact of irrelevant signals, which contributes

to overfitting, leading to better generalization. However,

when tasks lack shared information, they compete for the

limited model capacity, resulting in performance degrada-

tion (Sener & Koltun, 2018; Wu et al., 2020; Maninis et al.,

2019). To address this challenge, task grouping has emerged

as a promising solution to identify subsets of tasks that can

be trained together, avoiding negative interference and pro-

moting improved performance.

Traditionally, the decision of task grouping has been ap-

proached through costly cross-validation techniques or hu-

man expert knowledge (Zhang & Yang, 2022). However,

these methods have limitations when applied to different

problem domains and may not scale well. Some attempts

have been made to approach the problem differently en-

abling the models to automate the search over which param-

eters to share among particular tasks (Zhang et al., 2022a;

Misra et al., 2016). Methods such as Neural Architecture

Search (Liu et al., 2018; Huang et al., 2018; Chen et al.,

2023; Zhang et al., 2022a; Sun et al., 2020; Vandenhende

et al., 2019), Soft-Parameter Sharing (Ruder et al., 2019;

Long et al., 2017; Misra et al., 2016), and asymmetric infor-

mation transfer (Lee et al., 2016; 2018; Huang et al., 2022a)

have been developed. However, these models often exhibit

poor generalization and struggle to perform well on diverse

tasks and domains. Besides, they often require a large model

capacity and do not thus scale well with a large number of

tasks.

Therefore, gradient-based approaches (Fifty et al., 2021;

Strezoski et al., 2019) have also been explored to deter-

mine task grouping in advance. The Task Affinity Grouping

(TAG) approach (Fifty et al., 2021), which leverages gradi-

ents to determine task similarity, is an example of such an

approach. Nevertheless, it has complex training paradigm

and requires Θ(N2) more forward and backward passes

to compute the inter task affinities, putting an issue with

scalability even if we enhance the solution’s modularity. An-

other method, called Higher-Order Approximation (HOA)

(Standley et al., 2020), reduces the exponential number of

MTL training, from the exhaustive search, by considering

only the quadratic pairs of task combinations. However,

even with such relaxation, the scalability of HOA remains

limited, particularly when dealing with a large number of

tasks.

The task grouping problem has been addressed in recent

studies through a Meta-Learning approach (Song et al.,

2022), aiming to create a meta-learner that can estimate task

grouping gains. Nevertheless, the computational demands

of this approach pose practical challenges for real-world

applications; it requires training MTL networks for every

chosen task combination in the training set for multiple iter-

ations. It furthermore outputs all the possible gains of every

task combination, whose numbers grow exponentially, and

runs a search algorithm over these exponentially growing

gains to find the optimal grouping. As a result, the scalabil-

ity of this solution is severely limited, making it less feasible

for a larger number of tasks.

3. Task Clustering using Data Maps

Now, we elaborate in the components in our method in the

next sections. We start with stating the notations we will

use along with our MTL architecture we are using in our

experiments in Section 3.1. Then, we move on to illustrate

the data maps, which is crucial component of our method in

Section 3.2. In Section 3.3, we talk regarding the approaches

we use to cluster the tasks. We also introduce our evaluation

mechanism of our task grouping in Section 3.4. Finally,

we conclude this part with a simple theoretical comparison

of our method and the literature from the perspective of

scalability and modularity in Section 3.5. Figure 1 provides

an overview of our method.

3.1. Preliminaries

Notations In our paper, we use the following notations

consistently. The set of all tasks is denoted as T =
{T1, . . . , Tn}, where n represents the number of tasks and

|T | = n. The total number of training data points is de-

noted as N . We calculate the data maps at specific epochs,

and the set of epochs is represented as E = {E1, . . . , Ek},

where Ei corresponds to the ith epoch. The task clusters

are denoted by C = {C1, . . . , Cm}, and each cluster Ci has

an associated centroid ci. The participation of each task i

in cluster j is represented by wi,j , with the constraint that
∑|C|

j=0
wi,j = 1, indicating the percentage of membership;

Wi is the weight vector of the tasks in cluster j. The values

of wi,j range from 0 to 1, where 1 signifies full membership

and 0 indicates no membership.

MTL Architecture The MTL procedure for a given
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Shared Layers

Head 1 Head 2 Head 

Input

Task 2 O/P Task  O/P

Data Maps

Multi-Head MTL Architecture

Task 1 O/P Tasks Loss
Weights

Specialized MTL Multi-Head Training

Tasks Loss
Weights

Tasks

Clusters

Model 1 Model 

Train Multi-Head MTL on all the tasks Extract the data maps Soft-cluster to generate
task membership weights

[Optional]
Use membership as loss weights

to train  specialized models

Figure 1. Overview of our method to cluster the tasks using Data Maps. (1) we use a single Multi-head Multi-Task Learning architecture

to jointly train all the tasks. Each head is task-specific layers. (2) we extract the data maps of all the tasks across the epochs in E. (3) we

use the data maps to cluster the tasks using kmeans and generate the memberships according to Equation 3. (4) to evaluate our clustering

results, we train m models where each model represents a cluster focusing on particular tasks using the memberships as loss weights.

task combination, consisting of τ tasks denoted as

{Ta1
, . . . , Taτ

}, is defined as training with a joint objec-

tive for these tasks (Equation 1) where L is the accumulated

loss value of the cluster, Lk is the loss of the kth task, and

wk ∈ [0, 1] is an optional task weight of the kth task.

L =

τ
∑

k=1

wk · Lk (1)

Following the previous approaches (Fifty et al., 2021; Stan-

dley et al., 2020; Song et al., 2022), we utilize a commonly

employed hard-sharing multi-head architecture (Figure 1)

for all our MTL experiments, where a single feature extrac-

tor is used to obtain shared representations, and separate

task-specific heads are employed to output the result. Ad-

ditionally, for all the experiments, we maintain the same

data splits, via prior seeding, and keep the optimization al-

gorithm and other hyperparameters fixed; this is to make

sure any variability in the performance is only attributed to

the task grouping and the corresponding weights if any.

3.2. Data Maps as Task Features

Data Maps (Swayamdipta et al., 2020), originally developed

as a model-based tool for characterizing and diagnosing

NLP datasets, serve as a valuable component in our ap-

proach. They leverage the model behavior concerning indi-

vidual data point instances of the training set for each task.

In our work, we employ Data Maps as task features due to

their simplicity, scalability, and ability to extract them on

the fly without prior knowledge of the model architecture,

thus enhancing the modularity of our approach.

The concept behind Data Maps revolves briefly around ex-

tracting two essential values for each data point: the model

confidence (µ) of the true class, which is the average proba-

bility of the true class over some epochs, and the variability

(σ) of this confidence, which is the standard deviation of

the true class probabilities over the same epochs. For a

particular task, the data map shape is (N, 2) where N is the

training size. Figure 2 shows an example of the resulting

Data Map for an example task extracted from CIFAR10

dataset (Krizhevsky et al., 2009).

Because their information is very task-dependent, we

thought they can serve as task descriptors. To further en-

hance the expressiveness of the extracted features, we also

extract data maps at various epochs, allowing us to gain

insights into their evolution over time; the resulting shape in

such case is (|T |, |E|, N, 2). Therefore, by analyzing their

characteristics, over the different epochs during training,

we can capture crucial information about the relatedness of

each task.

In the extraction of data maps, we employ two approaches.

The first approach involves building a single MTL model

that incorporates all tasks and extracting the data maps di-

rectly from this unified model. Alternatively, we utilize the

second approach, where individual models are constructed

for each task, resulting in multiple STLs, and merging the

data maps obtained from each model. Our results are pri-

marily based on the first approach, as it offers the advantage
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of a single training procedure, simplifying computational

complexity, and streamlining experimentation, while having

the same qualitative results as the STL.

Figure 2. An example of a generated data map for the “Living be-

ing” task after 21 epochs of co-training on 15 tasks of G2 (Section

4.1)

3.3. Task Clustering

With the extracted data maps in hand, our next step is to

group the tasks into clusters based on their similarity. We

propose three distinct approaches for task clustering: soft

clustering, hard clustering, and point-based soft clustering.

In both hard and soft clustering, we represent each task as

a vector by concatenating the corresponding data maps. In

the case of hard clustering, we employ the k-means algo-

rithm (Lloyd, 1982) to cluster these task vectors, aiming

to identify distinct clusters of tasks. To introduce a more

nuanced representation of task similarities, we incorporate

a modified version of the fuzzification step (Equation 3),

from (Bezdek et al., 1984), into our approach, which en-

ables soft clustering, where xi represents the ith task vector

of the corresponding data maps and F > 1 represents the

fuzzification index. This fuzzification process assigns soft

memberships to tasks, allowing for more flexible and com-

prehensive clustering results. We predominantly rely on

the soft clustering approach due to its effectiveness and

reliability.

wi,j =
1

∑|T |
k=1

(

∥xi−cj∥
∥xi−ck∥

)
2

F−1

(2)

=
∥xi − cj∥

−2

F−1

∑|T |
k=1

(∥xi − ck∥)
−2

F−1

(3)

In early experiments, though, we also explored a point-

based clustering approach to determine the participation

membership of tasks. This approach involves clustering

each instance point per task within each data map. Each

data point then serves as a vote for its corresponding task,

and the participation membership of each task is calculated

based on the percentage of data points within the cluster

(Equation 4) where dik,e represents the kth data point of the

data map taken at epoch e for task i.

wi,j =

∑N

k=1

∑|E|
e=1

[dik,e ∈ Cj ]

|E| ·N
(4)

However, we do not heavily rely on this point-based ap-

proach in our method. This is because it treats the data

points within a data map in isolation, failing to capture the

abstract behavior specific to each task and overlooking the

evolution of data maps over different epochs.

3.4. Model Specialization through Loss Weighting

Input

Model 1 Model 2 Model 

Model 1 Output Model 2 Output Model  Output

Final Output

Figure 3. The procedure to use our specialized trained models to

infer the results

In order to assess the effectiveness of our task grouping

results, we use loss weighting as a method of model spe-

cialization. We construct MTL models that are tailored to

specialize in specific sets of tasks based on the membership

weights obtained from soft clustering results. For each clus-

ter, we build an individual MTL model that focuses on the

tasks assigned to that cluster according to their correspond-

ing weights (Equation 1). To evaluate the performance of

our solution, we apply the weighted average of the models’

outputs according to the membership weights as in Equation

5, where O is our final output, Ok is the output according

to the kth cluster, and Wk is the weight vector of the kth
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Table 1. Comparison of asymptotic growth of the equivalently

trained number of MTL models to get task grouping of various

methods and ours

METHOD EFFECTIVE MTL MODELS (↓)

EXHAUSTIVE SEARCH Θ
(

2N
)

HOA Θ
((

N

2

))

= Θ
(

N
2
)

TAG Θ
(

N
2
)

MTG-NET Θ(N ·K)

STG-MTL Θ(1)

cluster. Figure 3 provides an overview of these operations

while inferring the output. By comparing the resulting val-

ues with both STL and traditional MTL schemes, we can

gain insights into the benefits and improvements brought by

our task grouping approach.

O =

m
∑

k=1

Wk ·Ok (5)

3.5. Theoretical Scalability Comparison

In the theoretical scalability comparison, we evaluate our

method against existing literature, focusing on the number

of models required for clustering. Table 1 presents the

comparison, where lower numbers indicate better scalability.

Our approach stands out with excellent scalability, as it

only necessitates training a single MTL model to extract

data maps and perform clustering, or O(N) if we consider

extracting data maps from STL models. This offers the most

promising scalability potential for a larger number of tasks.

That is why we can scale our experiments to a very large

number of tasks as in Section 4.

Notice TAG requires one single MTL training, yet this is a

customized training procedure where each epoch is effec-

tively processed Θ(N2),
(

N
2

)

in particular, times to compute

the inter-task affinities pairs, which like the other methods

limits its scalability. Therefore, one MTL training of TAG

utilizes the same compute of Θ(N2) MTL models trained

within the other methods normally.

Furthermore, our method’s data map computation is per-

formed on the fly, making it both model and task agnostic.

This feature enhances the modularity of our approach, en-

abling effortless adaptation to different model architectures

and tasks without manual intervention.

4. Experiments

In this section, we present a comprehensive overview of our

experiments, focusing on assessing the effectiveness of our

method and presenting the corresponding results. Section

4.1 outlines the specifics of the datasets utilized in our ex-

perimentation, as well as the tasks employed. In Section

4.2, we delve into the details of the model architecture and

the hyperparameters used during experimentation. The out-

comes of the soft clustering of tasks are presented in Section

4.3, where we highlight the effectiveness of our approach

in grouping related tasks. Finally, in Section 4.4, we evalu-

ate the quality of the obtained clustering results comparing

them to STL and MTL results.

4.1. Datasets and Tasks

Our task generation is based on the CIFAR10 and CI-

FAR100 datasets (Krizhevsky et al., 2009). We define three

groups of tasks for our experiments. In Group 1 (G1), we

include binary classification tasks that determine whether

an image belongs to a specific label in CIFAR10 or not. G1

consists of 10 tasks: {airplane, automobile, bird, cat, deer,

dog, frog, horse, ship, truck}.

Group 2 (G2) expands on G1 by introducing additional

tasks on CIFAR10. These tasks include {Living being,

Odd-numbered, Downside, Not living being, random}. The

“Living being” task aims to detect whether an image con-

tains a living being, which includes images with the labels

{bird, cat, deer, dog, frog, horse}. Similarly, the “Not living

being” task focuses on identifying non-living beings; these

are { airplane, automobile, ship, truck} classes in CIFAR10.

Notably, “Living being” and “Not living being” are inten-

tionally designed to be similar tasks for testing purposes.

The “Odd-numbered” task identifies whether the label of a

CIFAR10 image is odd or not, encompassing {automobile,

cat, dog, horse, truck} classes. Additionally, we flip half

of CIFAR10 images and create a task to train the model to

recognize vertically flipped images, the “Downside” task.

Lastly, the “random” task assigns random binary labels to

the entire dataset with a predefined seed for consistency

and reproducibility. It is worth mentioning that while the

original tasks in G1 are imbalanced, the extra tasks in G2

are all balanced ones.

Group 3 (G3), similar to G1, consists of 100 binary classifi-

cation tasks using the CIFAR100 labels. We also utilize the

20 super labels of CIFAR100 as our ground truth for task

clustering evaluation. It is worth mentioning that CIFAR100

super labels are not intended for task grouping, so they are

not grouped based on visual similarities like our method’s

objective. Instead, they are mostly clustered semantically,

even though there are some exceptions like mushrooms and

the classes of vehicles 1 and 2. Still, we think they serve as

an informative indicator of the effectiveness of our approach,

especially in the visually coherent superclasses.

4.2. Model Architectures and Hyper-Parameters

For all our experiments, we adopt the RESNET18 architec-

ture (He et al., 2016) as our base model. Our method is
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(a) 2 clusters

(b) 3 clusters

Figure 4. Task grouping of G2 with F = 2

model-agnostic, so we have also experimented with models

with much less complexity, yet we use RESNET18 consider-

ing it has moderate model capacity. Furthermore, we utilize

it without any pre-training, ensuring that the model starts

from scratch for each task grouping scenario. The last fully

connected layer of RESNET18 serves as the task heads,

with the number of output neurons corresponding to the

number of tasks. Each neuron in the task heads represents

a specific classification task. Throughout our experiments,

the rest of the network, excluding the task heads, is shared

among all tasks. Also, we train the model for 50 epochs

in all our experiments: to extract data maps and to evalu-

ate the models. Additionally, in our clustering process, we

primarily set the fuzzification index (F ) to 2, unless explic-

itly mentioned otherwise. The fuzzification index controls

the level of fuzziness in the soft clustering algorithm, so

increasing it produce softer decisions.

In terms of the loss function, we utilize Binary Cross En-

tropy as the binary classification loss for our tasks. However,

to address the issue of task imbalance, we incorporate a

penalty on positive instances for each task. By applying this

penalty, we ensure that the model pays more attention to the

minority label during training, thereby mitigating the impact

of the imbalance and promoting better overall performance.

Finally, it worth mentioning that we do not perform any

kind of tuning to any model. We use the same basic settings

in all of our experiments.

4.3. Task Clustering Results

Results of our task clustering experiments are presented for

all groups. We initially experimented on G2, generating

their data maps as described in Section 3.2 and Clustering

them as in Section 3.3, as depicted in Figure 4. Notably, our

method successfully clustered the “random” task separately,

indicating its dissimilarity to the other tasks. Furthermore,

throughout all our experiments, the tasks “Living being”

(a) 2 clusters

(b) 3 clusters

Figure 5. Task grouping of G1 with F = 2

and “Not living being” consistently exhibited the same mem-

bership distribution, which is reasonable considering their

equivalence.

Moreover, when focusing solely on the first 10 tasks from

G2 without any additional tasks, our clustering algorithms

demonstrated some semantic clustering capabilities, as

shown in Figure 4b. The algorithm successfully grouped

images of living beings, including {bird, cat, deer, dog, frog,

horse}, while another group consisted of images of non-

living beings such as {airplane, automobile, ship, truck}.

Nevertheless, this might be due to the impact of the “Living

being” and “Not living being” tasks; we therefore conducted

a similar experiment on G1, generating their data maps and

clustering the tasks, without any extra tasks.

As illustrated in Figure 5, even without additional tasks,

our method performed the same reasonable clustering for

G1, grouping living beings together and non-living things

together 5a. Additionally, Figure 5b demonstrates the clus-

tering using three clusters, revealing that the living being

cluster was divided into two groups: cluster 1 and cluster 2.

Cluster 1 predominantly contained quadruped animals {cat,

dog, horse}, while cluster 2 included {bird, frog, deer} that

represented the other living creatures except for the deer.

These results showcase the effectiveness of our clustering

algorithm in capturing semantic similarities among tasks

based on the visual data leading to meaningful task group-

ings.

In addition to our experiments on G1 and G2, we conducted

a comprehensive evaluation of an unprecedented number of

tasks, specifically 100 tasks from CIFAR100, in G3. As part

of this evaluation, we compared our task clustering results

against the predefined superclasses provided by CIFAR100.

It is important to note that the superclasses in CIFAR100

primarily rely on semantic relationships as illustrated in
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(a) Membership clustering of People superclass

(b) Membership clustering of Flowers superclass

Figure 6. Task grouping of G3 (100 Tasks of CIFAR100) into 20
clusters with F = 2

Section 4.1. That is why we focus on coherent superclasses

like people and flowers, as examples.

In Figure 6, we showcase an example of the clustering re-

sults for a group of super tasks. It is noteworthy that our

method successfully clusters certain groups of tasks in align-

ment with the predefined CIFAR100 superclasses, as illus-

trated in Figure 6a. However, it is important to acknowledge

that there are cases where the clustering may not be perfect,

as depicted in Figure 6b; we think this is primarily because

our method focus one visual similarities, which is exploited

during training rather than semantics. Nevertheless, even in

such instances, our clustering algorithm manages to allocate

significant weights of all tasks into distinctive clusters, such

as clusters 0 and 8 in Figure 6b. Notably, in cluster 8, the

participation percentages of the tasks {orchid, poppy, rose,

tulip} are the 2nd highest across all clusters, indicating a

close relationship with the missclassified task sunflower,

yet our method suggests that the other four tasks are more

visually related. We further discuss all the clustering result

details of the 100 Tasks in Appendix A.

4.4. Evaluation Analysis

To further validate the effectiveness of our method, we con-

ducted a comprehensive evaluation as described in Section

3.4 on all task groups. Figure 7 presents the average F1

score for both the training and test sets of all the three

sets of tasks. Our method is denoted by STG-MTL xxC

(F=2) where xx represents the number of clusters. The

MTL curve represents the results obtained from training

an MTL model on all tasks without any grouping, while

the STL curve represents the results obtained by training

separate STL models for each task and merging their out-

puts. We compare the performance of our method against

the MTL and STL approaches in both G1 & G2 and against

the MTL approach only in G3 because the STL performance

is poorer than the MTL, as it overfits.

(a) Training Set Results (G1) (b) Test Set Results (G1)

(c) Training Set Results (G2) (d) Test Set Results (G2)

(e) Training Set Results (G3) (f) Test Set Results (G3)

Figure 7. Average F1 Scores of all the Groups on both the training

and test sets

Overall, our method consistently outperforms both the MTL

and STL approaches, indicating that the task grouping pro-

vides valuable information for improving task performance.

Notably, although our method tends to overfit and achieves

excellent training performance, it also achieves the best

performance on the test set. This suggests that if the mod-

els were further fine-tuned, even greater gains could be

achieved, yet we refrain from tuning any of the models in

this study to guarantee fairness in comparison.

5. Conclusion and Future Work

In conclusion, we have presented STG-MTL, which is a

novel scalable approach for task grouping in multi-task

learning (MTL) settings. Our method utilizes data maps

(Swayamdipta et al., 2020) to identify task similarities and

group them accordingly. We showed is superior scalabil-

ity theoretically in comparison to TAG (Fifty et al., 2021),

HOA (Standley et al., 2020), and MTG-Net (Song et al.,

2022). We have also demonstrated the effectiveness of

our method through our experiments on CIFAR10 and

CIFAR100 datasets (Krizhevsky et al., 2009), where we

pushed the boundaries by experimenting with 100 tasks,

which has never been done before in the literature proving

its scalability. We have also compared our clustering results
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against the predefined superclasses in CIFAR100, further

validating the effectiveness of our approach. Furthermore,

our method outperformed traditional MTL and single-task

learning (STL) approaches, showcasing the quality of task

grouping and its ability to improve multi-task learning per-

formance.

For future work, we plan to expand the scope of our ex-

periments by including a wider range of datasets and task

types, enabling a more comprehensive evaluation of our

approach’s effectiveness and applicability. Furthermore, as

our Data Maps are currently limited to classification tasks,

we aim to explore their generalization to other task types,

such as regression. Additionally, we hope our research

could open a new research direction in the MTL community

to explore the development of new features that can cap-

ture the training dynamics efficiently, other than data maps.

By advancing this research direction, we can unlock new

possibilities for enhancing performance and driving further

advancements in the field of MTL.
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(a) aquatic mammals (b) fish (c) flowers

(d) food containers (e) fruit and vegetables (f) household electrical devices

(g) household furniture (h) insects (i) large carnivores

(j) large man-made outdoor things (k) large natural outdoor scenes (l) large omnivores and herbivores

(m) medium-sized mammals (n) non-insect invertebrates (o) people

(p) reptiles (q) small mammals (r) trees

(s) vehicles 1 (t) vehicles 2

Figure 8. Task grouping of G3 (100 Tasks of CIFAR100) into 20 clusters with F = 2

A. Task Clustering Results of 100 Tasks

In this appendix, we present detailed insights into the task clustering results of 100 tasks, building upon the experimental

setup outlined in Section 4.3. Figure 8 showcases the clustering results using 20 clusters, while Figure 9 illustrates the

results with 10 clusters. Each image in the figures represents the clustering outcomes for one superclass from CIFAR100.

Notably, the clustering with 20 clusters demonstrates successful grouping in many categories, such as {People, Trees, Food

Containers, Flowers, Household Electrical Devices}. Figures 8s and 8t highlight the close association between Vehicles 1

and 2, as they are almost merged into the same cluster (Cluster 15). When reducing the number of clusters to 10, we observe

enhanced coherence in the assigned tasks. For instance, the tasks related to ”Fruit and Vegetables” are nearly clustered

together after reducing the number of clusters.

Moreover, our method effectively captures the logical associations between categories. Figures 9f and 9g showcase the

plausible merge between ”Household Electrical Devices” and ”Household Furniture.” Additionally, we observe similar

distribution patterns among related categories, such as { Large Carnivores, Large Omnivores and Herbivores, Medium-Sized

Mammals} in Figures 9i, 9l, and 9m respectively.

Overall, these results reveal the qualitative success of our approach in clustering a very large number of tasks, highlighting

the effectiveness of our method even in such challenging scenarios.
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(a) aquatic mammals (b) fish (c) flowers

(d) food containers (e) fruit and vegetables (f) household electrical devices

(g) household furniture (h) insects (i) large carnivores

(j) large man-made outdoor things (k) large natural outdoor scenes (l) large omnivores and herbivores

(m) medium-sized mammals (n) non-insect invertebrates (o) people

(p) reptiles (q) small mammals (r) trees

(s) vehicles 1 (t) vehicles 2

Figure 9. Task grouping of G3 (100 Tasks of CIFAR100) into 10 clusters with F = 2
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